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Abstract: In this paper, a common fixed point theorem is presented for generalized
ϕ-weak contraction mappings. Also, we examine the existence and uniqueness
of common fixed points for single-valued mappings satisfying the notion of weak
compatibility in the setup of complete metric space. Our result generalizes and
extends many results existing in literature. An example is given to show that our
results are proper generalizations of the existing ones and provide an application
to integral equation.
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1. Introduction
The study of existence and uniqueness of coincidence points and common fixed

points of mappings satisfying certain contractive conditions has been an interesting
field of mathematics from 1922, when Banach stated and proved his famous result
(Banach contraction principle).
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Sessa [31] introduced the concept of weakly commuting mappings and obtained
some common fixed point theorems in complete metric space. In this way S. T. Patil
[24] proved some common fixed point theorems for weakly commuting mappings
satisfying a contractive conditions in complete metric space. In 1986, G. Jungck
[12] defined compatible mappings and discussed few common fixed point theorems
in complete metric space. Also he showed that weak commuting mappings are
compatible mappings but converse need not hold. In 1998, the concept of weakly
compatible pairs of mappings has been introduced by Jungck [13], that is the class
of mappings such that they commute at their coincidence points. In recent years,
several authors have obtained coincidence point and common fixed point results
for different classes of mappings on various metric spaces such as complete metric
spaces, partially ordered metric spaces, Ordered b-metric spaces, b-metric space,
cone metric spaces etc see ([1], [8], [10], [17]).

Recently, Parvaneh [22] proved some common fixed point theorems for weakly
compatible pair of mapping in the set up of complete metric space. Zhang and Song
[35] proved some common fixed point theorems for two single valued generalized
ϕ-weak contraction mappings. Inspired by their work, in the present paper, we
prove a common fixed point theorem for generalized ϕ-weak contraction mappings
using the notion of weak compatibility. We justify our theorem by an example and
provide an application.

2. Preliminaries
We first present some important definitions. Throughout the paper N and R

denote the set of natural numbers and set of real numbers, respectively.
In 1997, Alber and Guerre-Delabriere [3] defined the concept of ϕ-weak con-

traction.

Definition 2.1. A function T : X → X on a metric space (X,d) is said to be a
ϕ-weak contraction if there exists a map ϕ : [0,+∞)→ [0,+∞) with ϕ(0) = 0 and
ϕ(t) > 0 for all t > 0 such that for all x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)).

Theorem 2.2. [29] Let (X,d) be a metric space and T : X → X be a mapping on
X such that for all x, y ∈ X, we have

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)),

where ϕ : [0,+∞) → [0,+∞) is a continuous and non decreasing function with
ϕ(t) > 0 for all t > 0. Then T has a unique fixed point.
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The following concept of generalized ϕ-weak contraction was introduced by
Zhang and Song [35] in 2009.

Definition 2.3. Let (X,d) be a metric space. Two self mappings S, T : X → X are
said to be generalized ϕ-weak contractions if there exists a function ϕ : [0,+∞)→
[0,+∞) with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that for all x, y ∈ X,

d(Tx, Sy) ≤ N(x, y)− ϕ(N(x, y)),

where N(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), 1
2
(d(x, Sy) + d(y, Tx))}.

Theorem 2.4. [35] Let (X,d) be a metric space and S, T : X → X be two mappings
such that for all x, y ∈ X,

d(Tx, Sy) ≤ N(x, y)− ϕ(N(x, y)),

where ϕ : [0,+∞) → [0,+∞) is a lower semi continuous function with ϕ(0) = 0
and ϕ(t) > 0 for all t > 0. Then T and S have a unique common fixed point.

Definition 2.5. [30] Consider the class of functions Φ = {ϕ|ϕ : R+ → R+}, which
satisfies the following assertions:
(i) t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2),
(ii) (ϕn(t))n∈N converges to 0 for all t > 0,
(iii)

∑
ϕn(t) converges for all t > 0.

If above conditions (i− ii) hold then ϕ is called a comparison function, and if the
comparison function satisfies (iii), then ϕ is called a strong comparison function.

Remark 2.6. [30] If Φ = {ϕ|ϕ : R+ → R+} is a comparison function, then
ϕ(t) < t, for all t > 0, ϕ(0) = 0 and ϕ is right continuous at 0.

3. Main Result
In this section, we establish a common fixed point theorem for weakly compat-

ible mappings.

Theorem 3.1. Let (X, d) be a metric space and E be a nonempty closed subset of
X. Suppose T, S : E → E are two self mappings and A,B : E → X are mappings
on X such that for all x, y ∈ X,

d(Tx, Sy) ≤M(x, y)− ϕ(M(x, y)), (3.1)

where

M(x, y) = max{d(Ax,By), d(Ax, Tx), d(By, Sy),
1

2
(d(Ax, Sy) + d(By, Tx))},
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and ϕ : [0,+∞) → [0,+∞) is lower semi continuous with 0 < ϕ(t) < t for
t ∈ (0,+∞) and ϕ(0) = 0 satisfying the following assertions:
(i) T (E) ⊆ A(E) and S(E) ⊆ B(E);
(ii) the pair (T,A) and (S,B) are weakly compatible.
Also, assume that A(E) and B(E) are closed subsets of X. Then T , A, S and B
have a unique common fixed point.
Proof. Let x0 ∈ E. There exists two sequences {xn}+∞n=0 and {yn}+∞n=0 such that
xn+1 = Axn and y0 = Tx0 = Ax1, y1 = Sx1 = Bx2, y2 = Tx2 = Ax3, · · ·
y2n = Tx2n = Ax2n+1, y2n+1 = Sx2n+1 = Bx2n+2 for all n ≥ 0. First we proof that
limn→+∞ d(yn, yn+1) = 0 from (3.1) we have, d(y2k+1, y2k) = d(Sx2k+1, Tx2k) =
d(Tx2k, Sx2k+1) which implies

d(y2k+1, y2k) ≤M(x2k, x2k+1)− ϕ(M(x2k, x2k+1)) (3.2)

where

M(x2k, x2k+1) = max{d(Ax2k, Bx2k+1), d(Ax2k, Tx2k), d(Bx2k+1, Sx2k+1),

1

2
(d(Ax2k, Sx2k+1) + d(Bx2k+1, Tx2k))}

= max{d(y2k−1, y2k), d(y2k−1, y2k), d(y2k, y2k+1),

1

2
(d(y2k−1, y2k+1) + d(y2k, y2k))}

= max{d(y2k−1, y2k), d(y2k−1, y2k),
1

2
(d(y2k−1, y2k+1))}

= max{d(y2k−1, y2k), d(y2k−1, y2k),
1

2
(d(y2k−1, y2k) + d(y2k, y2k+1))}

= max{d(y2k, y2k+1), d(y2k−1, y2k)}.

By (3.2), we have

d(y2k+1, y2k) ≤ max{d(y2k, y2k+1), d(y2k−1, y2k)}
− ϕ[max{d(y2k, y2k+1), d(y2k−1, y2k)}]

= d(y2k−1, y2k)

which implies that d(y2k+1, y2k) ≤ d(y2k−1, y2k). Similarly we can prove that d(y2k+2,
y2k+1) ≤ d(y2k+1, y2k). If n = 2k + 1, then d(yn+1, yn) ≤ d(yn, yn−1), for all n ≥ 0.
Thus {d(yn, yn+1)} is monotone decreasing sequence of nonnegative real numbers
and hence it is convergent. Now

M(x2k, x2k+1) = M(Bx2k−1, Ax2k)

= M(y2k−2, y2k−1).
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Thus M(y2k−2, y2k−1) = max{d(y2k, y2k+1), d(y2k−1, y2k)}.
Suppose limn→+∞ d(yn+1, yn) = limn→+∞M(yn−2, yn−1) = r. By the lower semi
continuity of ϕ, we have ϕ(r) = limn→+∞ inf ϕ(M(yn−2, yn−1)).
We claim that r = 0. From (3.2), we have

d(yn+1, yn) ≤M(xn, xn+1)− ϕ(M(xn, xn+1))

= M(Bxn−1, Axn)− ϕ(M(Bxn−1, Axn))

= M(yn−1, yn)− ϕ(M(yn−1, yn)).

Taking limit as n→ +∞ on the above inequality, we have

r ≤ r − ϕ(r) implies ϕ(r) ≤ 0.

Thus ϕ(r) = 0, by the property of the function ϕ. Hence

lim
n→+∞

d(yn+1, yn) = r = 0. (3.3)

Next, we show that {yn} is a Cauchy sequence. We know that d(yn+1, yn+2) ≤
d(yn, yn+1), it is sufficient to show that the subsequence {y2n} is a Cauchy sequence.
Suppose that {y2n} is not a Cauchy sequence. Then there exists ε > 0 for which we
can find subsequences {y2m(k)} and {y2n(k)} of {y2n} such that d(y2m(k), y2n(k)) ≥ ε
for n(k) > m(k) > k. This means that d(y2m(k), y2n(k)−1) < ε. From triangle
inequality,

ε ≤ d(y2m(k), y2n(k))

≤ d(y2m(k), y2n(k)−2) + d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k))

≤ ε+ d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k)).

Letting k → +∞ in the above inequality, we have

lim
k→+∞

d(y2m(k), y2n(k)) = ε. (3.4)

Moreover

|d(y2m(k), y2n(k)+1)− d(y2m(k), y2n(k))| ≤ d(y2n(k), y2n(k)+1) (3.5)

|d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d(y2m(k), y2m(k)−1) (3.6)

|d(y2n(k), y2m(k)−2)− d(y2n(k), y2m(k)−1)| ≤ d(y2m(k)−2, y2m(k)−1). (3.7)
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From the equations (3.3), (3.4), (3.5), (3.6) and (3.7) we conclude that

lim
n→+∞

d(y2m(k)−1, y2n(k)) = lim
n→+∞

d(y2m(k)−1, y2n(k)−1)

= lim
n→+∞

(y2m(k)−2, y2n(k))

= ε. (3.8)

Now from (3.1), we have

d(y2m(k)−1, y2n(k)) = d(Sx2m(k)−1, Tx2n(k))

= d(Tx2n(k), Sx2m(k)−1)

= M(x2n(k), x2m(k)−1) − ϕ(M(x2n(k), x2m(k)−1)). (3.9)

Here

M(x2n(k), x2m(k)−1) = max{d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)),

d(Bx2m(k)−1, Sx2m(k−1)),

1

2
(d(Ax2n(k), Sx2m(k)−1) + d(Bx2m(k)−1, Tx2n(k)))}

= max{d(y2n(k)−1, y2m(k)−2), d(y2n(k)−1, y2n(k)),

d(y2m(k)−2, y2m(k)−1)),

1

2
(d(y2n(k)−1, y2m(k)−1) + d(y2m(k)−2, y2n(k)))}.

Now, we consider the following cases:
Case I. If M(x2n(k), x2m(k)−1) = d(y2n(k)−1, y2m(k)−2), then taking limit as n→ +∞
in (3.9), we get ε ≤ ε − ϕ(ε) ⇒ ϕ(ε) = 0. By our assumption about ϕ, we have
ε = 0, which is a contradiction.
Case II. If M(x2n(k), x2m(k)−1) = d(y2n(k)−1, y2n(k)), then taking limit as n → +∞
in (3.9), we get, ε ≤ 0− ϕ(0), which is a contradiction.
Case III. Finally, ifM(x2n(k), x2m(k)−1) = 1

2
(d(y2n(k)−1, y2m(k)−1)+d(y2m(k)−2, y2n(k))),

then taking limit as n → +∞ in (3.9), we get ε ≤ 1
2
(ε + ε) − ϕ(1

2
(ε + ε)), or

ε ≤ ε− ϕ(ε), which is a contradiction.
Hence {yn} must be a Cauchy sequence.

Finally we show that T , S, A and B have a common fixed point. Since (X, d)
is complete and {yn} is a Cauchy sequence in X, there is a z ∈ X such that
limn→+∞ yn = z. Also, being a closed subset of X,E is complete and {yn} ⊂ E;
We have z ∈ E. By assumption A(E) is closed, there exists u ∈ E such that
z = Au. For all n ∈ N .

d(Tu, y2n+1) = d(Tu, Sx2n+1) ≤M(u, x2n+1)− ϕ(M(u, x2n+1)), (3.10)
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Now,

M(u, x2n+1) = max{d(Au,Bx2n+1), d(Au, Tu), d(Bx2n+1, Sx2n+1),

1

2
(d(Au, Sx2n+1) + d(Bx2n+1, Tu))}

= max{d(z, y2n+1), d(z, Tu), d(y2n, y2n+1),

1

2
(d(z, y2n+1) + d(y2n, Tu))}.

Taking limit n → +∞ in (3.10), we get d(Tu, z) = 0. So, Tu = z. Similarly we
can show that Su = z. Therefore Tu = Su = Au = Bu = z.
Since the pair (A, T ) and (B, S) are weakly compatible, we have Tz = Sz = Az =
Bz. Therefore

d(Tz, y2n+1) = d(Tz, Sx2n+1)

≤M(z, x2n+1)− ϕ(M(z, x2n+1)). (3.11)

Here

M(z, x2n+1) = max{d(Az,Bx2n+1), d(Az, Tz), d(Bx2n+1, Sx2n+1),

1

2
(d(Az, Sx2n+1) + d(Bx2n+1, T z))}

= max{d(z, y2n+1), d(z, Tz), d(y2n, y2n+1),

1

2
(d(z, y2n+1) + d(y2n, T z))}.

Taking limit n → +∞ in (3.11), we get d(Tz, z) = 0. So Tz = z. Similarly
we can show that Sz = z. Therefore Tz = Sz = Az = Bz, we conclude that
Tz = Sz = Az = Bz = z. Thus, z is a common fixed point of T , S, A and B.
If there exists another point v ∈ E such that v = Tv = Sv = Av = Bv, then using
similar argument, we get

d(z, v) = d(Tz, Sv)

= M(z, v)− ϕ(M(z, v))

= d(z, v)− ϕ(d(z, v))).

Hence z = v. Therefore T , S, A and B have a unique common fixed point.
By the virtue of Theorem 3.1, we easily deduce the following well known results

as corollaries.
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If the mapping S=T in Theorem 3.1, we have the following.

Corollary 3.1. Let (X, d) be a complete metric space and E be a nonempty closed
subset of X. Let T : E → E be self map such that for all x, y ∈ E

d(Tx, Ty) ≤M(x, y)− ϕ(M(x, y)), (3.12)

where M(x, y) = max d(Ax,By), d(Ax, Tx), d(By, Ty), 1
2
(d(Ax, Ty) + d(By, Tx));

ϕ : [0,+∞)→ [0,+∞) is lower semi continuous with 0 < ϕ(t) < t for t ∈ (0,+∞)
and ϕ(0) = 0 and A,B : E → X satisfying the following assertions:
(i) T (E) ⊆ A(E) and T (E) ⊆ B(E);
(ii) the pair (T,A) and (T,B) are weakly compatible. Also, assume that A(E) is a
closed subset of X. Then T, A and B have a unique common fixed point.

If S = T and A = B in theorem 3.1, we have the following.

Corollary 3.2. Let (X, d) be a complete metric space and E be a nonempty closed
subset of X. Let T : E → E be self map such that for all x, y ∈ E

d(Tx, Ty) ≤M(x, y)− ϕ(M(x, y)), (3.13)

where M(x, y) = max d(Ax,Ay), d(Ax, Tx), d(Ay, Ty), 1
2
(d(Ax, Ty) + d(Ay, Tx)).

ϕ : [0,+∞)→ [0,+∞) is lower semi continuous with 0 < ϕ(t) < t for t ∈ (0,+∞)
and ϕ(0) = 0 and A : E → X satisfying the following assertions:
(i) T (E) ⊆ A(E) ;
(ii) the pair (T,A) are weakly compatible.
Also, assume that A(E) is a closed subset of X. Then T and A have a unique
common fixed point.

If A = B we get the main result of [19] as corollary.

Corollary 3.3. Let (X, d) be a complete metric space and E be a nonempty closed
subset of X. Let T, S : E → E be self mappings (at least one of T or S is surjective)
such that for all x, y ∈ E

d(Tx, Sy) ≤M(x, y)− ϕ(M(x, y)),

where ϕ : [0,+∞) → [0,+∞) is lower semi continuous with ϕ(t) > 0 for t ∈
(0,+∞) and ϕ(0) = 0 and A : E → X satisfying the following assertions:
(i) T (E) ⊂ A(E) and S(E) ⊂ A(E).
(ii) The pair (T,A) and (S,A) are weakly compatible.
Also, assume that A(E) is a closed subset of X. Then T , A and S have a unique
common fixed point.
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If A and B are identity mappings and we take ϕ(t) = k(t), where k ∈ [0, 1)
then

Corollary 3.4. Let (X, d) be a complete metric space and E be a nonempty closed
subset of X. Let S, T : E → E be self mappings and satisfy the condition of Theorem
3.1.

d(Tx, Sy) ≤ (1− k)M(x, y)

≤ αM(x, y) α ∈ (0, 1]

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), 1
2
(d(x, Sy) + d(y, Tx))}.

Now we furnish an example to demonstrate the validity of Theorem 3.1.

4. Example

Example 4.1. Let X = R and d(x, y) = |x − y|, for all x, y ∈ X. Then (X, d) is
a complete metric space. Let E = [0, 1]. The self maps T, S : E → E are defined
as T (0) = 0, T (x) = 1

x+6
(x 6= 0) and S(x) = x2

4
, for all x ∈ E. Let the mappings

A,B : E → X and ϕ : [0,+∞] → [0,+∞] be defined by A(x) = x, and B(x) = x
2

for all x ∈ E, and ϕ(t) = t3

5
.

Solution. Clearly,T (E) ⊂ A(E) and S(E) ⊂ A(E), which satisfy the condition
(i) of theorem 3.1 and T (A(0)) = A(T (0)) = 0 and S(B(0)) = B(S(0)) = 0, we
see that A and T as well as B and S are weakly compatible since they commute
as their coincidence point x = 0. T (1) = 1

7
, S(1

2
) = 1

16
, A(1) = 1, B(1

2
) = 1

4
. By

the equation (3.1), we have d(T (x), S(y)) = d(T (1), S(1
2
)) = |1

7
− 1

16
| = 9

112
and

M(1,
1

2
) = max{d(A(1), B(

1

2
)), d(A(1), T (1), d(B(

1

2
), S(

1

2
)),

1

2
(d(A(1), S(

1

2
)) + d(B(

1

2
), T (1)))}

= max{d
(
1,

1

4

)
, d
(
1,

1

7

)
, d
(1

4
,

1

16

)
,
1

2

(
d
(
1,

1

16

)
+ d
(1

4
, 1
))
}

= max
{3

4
,
6

7
,

3

16
,
27

32

}
=

6

7

there for,

M(x, y)− ϕ(M(x, y)) =
6

7
− ϕ(

6

7
)

=
294

343
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Hence d(T (x), S(y)) ≤M(x, y)− ϕ(M(x, y)).
Here, we see that all the conditions of Theorem 3.1 are satisfied. This implies that
T , S, A and B have a unique common fixed point (x = 0).

5. Application
Consider the following pair of nonlinear integral equations:

x(t) = f1(t)− f2(t) + µ

∫ t

a

m(t, s)gi(s, x(s))ds+ λ

∫ +∞

a

k(t, s)hj(s, x(s))ds (5.1)

for all t ∈ [a,+∞), where f1, f2 ∈ L[a,+∞) are known, f1(t) ≥ f2(t), m(t, s),
k(t, s), gi(s, x(s)), hj(s, y(s)), i, j = 1, 2 and i 6= j are real or complex valued
functions that are measurable both in t and s on [a,+∞) and λ, µ are real or
complex numbers. These functions satisfy the following:
(C1)

∫ +∞
a

supa<s<+∞ |m(t, s)|dt = M1 < +∞
(C2)

∫ +∞
a

supa<s<+∞ |k(t, s)|dt = M2 < +∞
(C3) gi(s, x(s)) ∈ L[a,+∞) for all x ∈ L[a,+∞) and there exists K1 > 0 such that
for all s ∈ [a,+∞),

|g1(s, x(s))− g2(s, y(s))| ≤ K1|x(s)− y(s)| for all x, y ∈ L[a,+∞)

(C4) hi(s, x(s)) ∈ L[a,+∞) for all x ∈ L[a,+∞) and there exists K2 > 0 such that
for all s ∈ [a,+∞),

|h1(s, x(s))− h2(s, y(s))| ≤ K2|x(s)− y(s)| for all x, y ∈ L[a,+∞).

The existence theorem can be formulated as follows:

Theorem 5.1. With the assumption (C1) − (C4), if the following conditions are
also satisfied:
(a) λ

∫ +∞
a

k(t, s)hi(s, µ
∫ s
a
m(s, τ)gj(τ, x(τ))dτ + f1(s) − f2(s))ds = 0, i, j = 1, 2,

i 6= j.
(b) For some x ∈ L[a,+∞),

µ

∫ t

a

m(t, s)gi(s, x(s))ds = x(t)− f1(t) + f2(t)− λ
∫ +∞

a

k(t, s)hi(s, x(s))ds

= Γi(t) ∈ L[a,+∞), i = 1, 2.

(c) If for some Γi(t) ∈ L[a,+∞) there exist Θi(t) ∈ L[a,+∞), such that

µ

∫ t

a
m(t, s)gi(s, x(s)− Γi(s))ds− f2(t) = f1(t) + λ

∫ +∞

a
k(t, s)hi(s, x(s)− Γi(s)− f2(s))ds

= Θi(t), i = 1, 2
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then the system (5.1) has a unique solution in L[a,+∞) for each pair of real or

complex numbers λ and µ with |λ|K2M2 < 1 and |µ|K1M1

1−|λ|K2M2
= α(say) < 1.

Proof. We define, for every x ∈ L[a,+∞)

Sx(t) = µ

∫ t

a

m(t, s)g1(s, x(s))ds− f2(t)

Tx(t) = µ

∫ t

a

m(t, s)g2(s, x(s))ds− f2(t)

Ux(t) = f1(t) + λ

∫ +∞

a

k(t, s)h1(s, x(s))ds

V x(t) = f1(t) + λ

∫ +∞

a

k(t, s)h2(s, x(s))ds

Ax(t) = (I − U)x(t), Bx(t) = (I − V )x(t),
where f1, f2 ∈ L[a,+∞) are known and I is the identity mappings on L[a,+∞).
Then S, T , U , V , A and B are mappings from L[a,+∞) into itself.
Indeed, we have:

|S(x)| ≤ |µ|
∫ +∞

a

|m(t, s)g1(s, x(s))|ds+ |f2(t)|

≤ |µ| sup
a<s<+∞

|m(t, s)|
∫ +∞

a

|g1(s, x(s))|ds+ |f2(t)|,

we apply conditions (C1) and (C2) in above inequality and thus we have∫ +∞

a

|S(x)|dt ≤ |µ|
∫ +∞

a

sup
a<s<+∞

|m(t, s)|dt
∫ +∞

a

|g1(s, x(s))|ds+

∫ +∞

a

|f2(t)|dt

< +∞, (5.2)

and hence Sx ∈ L[a,+∞). Similarly Tx ∈ L[a,+∞) also. For mapping U , we
apply the conditions (C2) and (C4) in the following manner:∫ +∞

a

|Ux(t)|dt ≤
∫ +∞

a

|f1(t)|dt+ |λ|
∫ +∞

a

sup
a<s<+∞

|k(t, s)|dt
∫ +∞

a

|h1(s, x(s))|ds

< +∞. (5.3)
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As f ∈ L[a,+∞) and so mapping U is a self mapping on L[a,+∞). Similarly V is
also a self mapping on L[a,+∞). With the help of (C2) and (C3), we have for all
x, y ∈ L[a,+∞)

|Sx− Ty| =
∫ +∞

a

|Sx(t)− Tx(t)|dt

=

∫ +∞

a

∣∣µ ∫ t

a

m(t, s)g1(s, x(s))ds− µ
∫ t

a

m(t, s)g2(s, y(s))ds
∣∣dt

=

∫ +∞

a

∣∣µ ∫ t

a

m(t, s)[g1(s, x(s))− g2(s, y(s))]ds
∣∣dt

≤
∫ +∞

a

|µ| sup
a<s<+∞

|m(t, s)|dt
∫ +∞

a

|[g1(s, x(s))g2(s, y(s))]|ds

= |µ|K1M1

∫ +∞

a

|x(s)− y(s)|ds

≤ |µ|K1M1|x− y|

≤ |µ|K1M1 max{d(x, y), d(x, Tx), d(y, Sy),
1

2
[d(x, Sy) + d(y, Tx)]}

≤ αM(x, y). (5.4)

Similarly, by (C2) and (C4), we get

|Ux− V y| ≤ |λ|K2M2|x− y|

= |λ|K2M2 max{d(x, y), d(x, Tx), d(y, Sy),
1

2
[d(x, Sy) + d(y, Tx)]}.

(5.5)

Hence, we have

|Ax−Bx| = |(I − U)x− (I − V )y|
= |(x− y)− (Ux− V y)|
≥ |x− y| − |Ux− V y|
≥ |x− y| − |λ|K2M2|x− y|
≥ (1− |λ|K2M2)|x− y|,

≥ (1− |λ|K2M2) max{d(x, y), d(x, Tx), d(y, Sy),
1

2
[d(x, Sy) + d(y, Tx)]}

(5.6)

which implies

|x− y| ≤ 1

1− |λ|K2M2

|Ax−By|. (5.7)
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From (5.4) and (5.7), we obtain

|Sx− Ty| ≤ |µ|K1M1|x− y|

≤ |µ|K1M1
1

1− |λ|K2M2

|Ax−By|

≤ |µ|K1M1

1− |λ|K2M2

|Ax−By|

≤ α|Ax−By|
≤ α|x− y| (ifA = B = I)

≤ αmax{d(x, y), d(x, Tx), d(y, Sy),
1

2
[d(x, Sy) + d(y, Tx)]}. (5.8)

Thus all the condition of Corollary 3.4 are satisfied, there exist a unique u ∈
L(a,+∞) such that Sv = Tv = v, and consequently, v is the unique solution of
(5.1).

6. Conclusion
The purpose of this paper is to give the generalized version of ϕ-weak contrac-

tion mappings on complete metric space. Also, we derive common coupled fixed
point theorems in complete metric spaces. Some examples are presented to verify
the effectiveness and applicability of our main results. Towards the end, an appli-
cation to integral equations has also been presented to support the usability of the
obtained results.
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